

The evolution of load-balancing
in a company remarkably like ours, with some sort of web application with a

database, that might provide, say, invoicing.

Goals:

 - what do we want to accomplish?

Goals:
Run fast.

 - the application is going to get busier as we get
more successful
 - which means taking up more server resources
 - so we need to keep it running fast

Goals:
Run fast.

Keep running.

 - and people are counting on us to be available
all the time
 - turns out "all the time" is really di!cult and
expensive
 - so it's really about minimizing downtime

 - Performance and Reliability

1st generation:

Just a server.

web

database

 - Where everyone starts out
 - Dunno if we did. probably?
 - Competition for resources slows down

2nd generation:

Dedicated tasks.
web

database

 - Not competing for resources anymore
 - Lightweight webserver, heavyweight database
server
 - Added benefit: Database server not publicly
accessible anymore

 - Helps "run fast". Doesn't help "keep running"
 - All of a sudden we've doubled the chances of
failure!

3rd generation:

Hot standby.

web

database

web

database

 - Get an extra server in case something fails
 - Prepared to take either role
 - This is where we are right now

3rd generation:

Hot standby.

Webserver failed!
web

database

web

database

 - Just bring up the standby as a webserver...

3rd generation:

Hot standby.

Webserver failed!
web

database

web

database

 - and it's up and running again!

 - Addressed reliability, but didn't help
performance
 - Paying for a box that just sits there doing
nothing

 - Tempting to put other things on that box
(staging, warehouse, backups)

4th generation:

Redundancy,

“load balancing”.
website

master db

slave db

app

website

app

 - Back to dedicating to web or to database
(security)
 - Have to divide up tasks by type (website/app)
 - Both webservers working hard
 - "hot standby" database server turns out to be
useful for backups

4th generation:

Redundancy,

“load balancing”.

Webserver fails!

website

master db

slave db

app

website

app

4th generation:

Redundancy,

“load balancing”.
website

master db

slave db

app

website

app

 - just promote webserver!
 - slows down a bit, but that accompanies failure

4th generation:

Redundancy,

“load balancing”.

Database server

fails!

website

master db

slave db

app

website

app

4th generation:

Redundancy,

“load balancing”.
website

master db

slave db

app

website

app

 - just promote slave!

 summary:
 - Run fast: Splits up load, two webservers
running all the time,
 one can't step on the other
 - Keep running: taking out one server doesn't
hurt (much)

5th generation:

Redundancy,

load balancing.
web

master db

slave db

web

load balancer

 What does a load balancer do?
 - takes request and hands it to a webserver
"backend"
 - webserver doesn't know anything's up
 - load balancer watches response time, and
prefers faster servers
 - fewer requests to slower (= busier) servers
 - no requests to failed servers

5th generation:

Redundancy,

load balancing.

Webserver fails...

web

master db

slave db

web

load balancer

 just keeps running

5th generation:

Redundancy,

load balancing.

What if a load

balancer fails?

web

master db

slave db

web

load balancer

 - in this setup, you're down to one webserver
anyhow

5th generation:

Redundancy,

load balancing.

Just use one web

server.

web

master db

slave db

web

load balancer

 - so just use one webserver.

5th generation:

Redundancy,

load balancing.

Or have two load

balancers.

web

master db

slave db

web

load
 balancer

load
 balancer

 - when one fails, the other keeps going.
 - this is not di!cult to automate!

Automation so far
 - Load-balancers each detect when a webserver
fails
 - Load-balancers together detect when each
other fails

5th generation:

Redundancy,

load balancing.

master db

slave db

web

l/bl/b

web web web ...

Web solved.

 - That's basically how web load balancing works.
 - It keeps scaling
 - More resources with every server, and one
failure means less and
 less

Scaling database servers is harder.

 - Webservers can be ignorant of each other
 - If one webserver handles request, the others
don't.
 - That's not true for databases.
 - Look at how load changes with more servers...

Web server load balancing

100%

Web server load balancing

50% 50%

Web server load balancing

25% 25%25% 25%

- Not *exactly* linear, but first approximation.

Web server load balancing

75% 75%75% 75%

Web server load balancing

75% 75%75% 75%

Web server load balancing

100% 100%100%

 - capacity planning
 - need to say "We can a"ord to have ___ fail"
 - clearly, with 4 at 75%, we can a"ord to have 0
fail.
 - Need to have 1/N room.

Database server load balancing

25% writes

25% reads

 - Di"erence here is reads and writes
 - You can read from any database server
 - But that means that writes have to happen to
all of them.

 - So here's a half-loaded database server
 - Half reads, half writes. Not realistic, usually
much more reads
 - But not redundant.

Database server load balancing

master

25% writes

25% reads

slave

25% writes

 - Replication takes the writes from one and runs
them on another
 - actually copies SQL statements over
 - Note that this *increased* the number of
operations
 - No performance benefit!

Database server load balancing

master

25% writes

12.5% reads

slave

25% writes

12.5% reads

 - Aha, we're load-balanced now!
 - Wait, we've gone from 50% utilization to 37%
even though we doubled
 the amount of hardware.
 - Reads are independent
 - Writes are dependent!

Database server load balancing

master

50% writes

25% reads

slave

50% writes

25% reads

 - twice as busy
 - both 75% utilized! do something!

Database server load balancing

master

50% writes

12.5% reads

slave

50% writes

12.5% reads

slave

50% writes

12.5% reads

slave

50% writes

12.5% reads

GET MORE!
 - uh oh.
 - Two more servers only got us from 75% to
62.5%.
 - Clearly this isn't going to work.

Database server load balancing

master

75% writes

25% reads

slave slave slave

75% writes

25% reads

75% writes

25% reads

75% writes

25% reads

 - Now adding more servers is just going to share
that 25% across.
 - One more takes us from 100% to 95%.
 - FOUR more takes us from 100% to 87.5%.
 - What if one fails?
 - Writes slowly consume all the headroom.

Database server load balancing

master a

37.5% writes

12.5% reads

slave a master b slave b

37.5% writes

12.5% reads

37.5% writes

12.5% reads

37.5% writes

12.5% reads

 - Introduce independence
 - Cut write load in half, literally
 - Note that we still need pairs, so we have
redundancy
 - Expensive move: code has to account for
"where is the data?"
 - and "Where do I put this new data?"
 - ORM solves part of this

Hello, Virginia.

 - Haven't talked about disaster recovery.

Dallas

Disaster recovery

 - Purring along normally, then a truck runs into
the transformer.
 - This happened to us last.. November?

Dallas

Disaster recovery

 - All of a sudden you have no servers at all.

Dallas

Disaster recovery

Virginia

DISASTER RECOVERY SITE

 - Copy of production site ready to go
 - This doubles your IT budget for things you
can't use.
 - If you use them, you can't fail over to them
 - Or if you do, where do you put the things you
used?

Dallas

Disaster recovery

Virginia

 - Bare-bones setup in Virginia
 - Enough to "limp by"
 - Failing over would be a last resort
 - Solves budget problem, but not the maintain-
and-recover issue

 - This is partly a marketing feature rather than
something we'd
 rush to use.

Run fast, keep running.

